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ABSTRACf

A polynomial discriminant method is developed for the racial classification ofstocks ofsockeye salmon.
The method is based upon the nonparametric estimation ofthe multivariate probability densities ofthe
scale characteristics for each stock considered. Errors in classification are examined and a correction
procedure is extended to the n-class case. As an example, sockeye salmon ofage 2.2 sampled on the high
seas are classified to river of origin based on freshwater scale growth patterns. Also, freshwater and
marine scale characters are evaluated for stock identification purposes involving certain Bristol Bay
runs.

Racial analysis ofhigh-seas salmon has important
applications both in life history studies of various
stocks and in management considerations of these
stocks. As a result, many have examined the
characteristics of scale structure to differentiate
salmon subpopulations. Konovalov (1971) notes
that some investigators were ignoring many
characteristics in scale structure which arise
under the effects of ecological factors in specific
bodies of water. When the ecological conditions
affecting scale characters are seriously consid­
ered, statistically significant differences between
subpopulations can often be found. The ability to
recognize salmon subpopulations depends upon
the differences between the stocks in terms of
examined characteristics and the accuracy of the
analytic technique. Various discriminant function
analyses have been traditionally used.

Fukuhara et al. (1962), Amos et al. (1963), and
Dark and Landrum (1964) used linear discrimi­
nant functions based upon morphological charac­
teristics to identify the continent of origin of
Pacific salmon. Scale characteristics and linear
discriminant functions were used by Anas (1964)
and Mason (1966). Anas and Murai (1969) used
linear and quadratic discriminant functions. Re­
cent investigations by Major et al. (1975) and Bil­
ton and Messinger (1975) used unspecified dis-
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criminant function techniques, probably similar
to those ofAnas and Murai (1969). These and other
studies show the utility of discriminant function
methodology for identifying races of Pacific salm­
on.

Salmon managers need a flexible and easily im­
plemented stock identification technique. This
paper applies a generalized discriminant function
technique to measurements of sockeye salmon
scales to attempt to fulfill this need.

DISCRIMINANT FUNCTION
ANALYSES OR

PATTERN RECOGNITION 4

Discriminant function analysis depends on the
recognition of underlying patterns differing
among classes of objects. In this case, scale pat­
terns characterize a sockeye salmon ofa particular
origin. A set of p-scale characters (a p-tuple or
vector in p-space) measured on an individual
salmon provides a description of that salmon. A
sample ofp-tuples for a number ofsalmon from one
origin (the learning sample) establishes a region
in p-space characteristic of that class of sockeye.
Samples from salmon of different and known ori­
gins establish regions in p-space which may be
separated by decision surfaces. A sockeye salmon
of unknown origin may be classified according to
which region its p-tuple occupies. The accuracy of
classification depends upon the precision with

4A good text on pattern recognition is given by Patrick (1972).
A review of the literature is given by Das Gupta (1973).
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they have common variance-covariance matrices.
Since this method is nonparametric, various scale
characteristics may be used for discrimination
with no particular regard to the underlying dis­
tributions. Thus, the method is flexible and practi­
cal.

Specht (1966) uses an estimated probability
density function of the form described by Parzen
(1962) and extended by Murthy (1966) to the mul­
tivariate case. The underlying multivariate den­
sity for each class is modeled by a sum offunctions
that are multivariate Gaussian in form, one such
function for each fish in the learning sample for
that class. This set offunctions is complete. There­
fore, for each class the underlying continuous
probability density, Gaussian or not, may be ap­
proximated arbitrarily closely by such a sum. A
power series expansion of this estimated denisty
then results in a polynomial term in the density
function, the coefficients of which are functions of
the observations (fish) in the learning sample. One
such set ofcoefficients is computed for each class to
be considered. These polynomials determine the
nonlinear decision surfaces and are the basis for
discrimination.

The individual multivariate Gaussian functions
(which when summed model the underlying mul­
tivariate distribution for that class) contain a
"smoothing parameter," a-, which appears in the
place of a standard errot. This parameter is then
incorporated in the estimates of the polynomial
coefficients. The reader is referred to Specht (1966)
for a discussion of the effect of this smoothing
parameter and for the algorithm for the calcula-

tion ofthe sets ofpolynomial coefficients {Dh i ...

h j .• , h h}' The polynomial discriminant func­

tion is:

+

+

which the regions are described and the inherent
separation between them.

These regions are described mathematically by
multivariate probability density functions.
Fisher's (1936) linear discriminant function
defines a linear decision surface (hyperplane) de­
rived by describing these regions as multivariate
normal density distributions with common
variance-covariance matrices (Welch 1939).
Quadratic discriminant functions have been de­
veloped (Smith 1947). The resulting decision sur­
faces are nonlinear. The quadratic discriminant
function does not require common variance­
covariance matrices. Anas and Murai (1969) com­
pared the classificatory abilities of the linear and
quadratic discriminant functions. They found (in
agreement with Isaacson 1954) that even if the
assumption that the distributions have common
variance-covariance matrices is violated, the
linear discriminant function would still give good
results for large sample sizes. But the quadratic
function gave slightly better results.

All investigators utilizing discriminant
analyses to separate races of Pacific salmon have
assumed that the density distributions of mea­
surements from a particular class of salmon were
multivariate normal. The frequency distributions
of scale characters in Major et al. (1975) show that
multimodal and skewed distributions occur for
chinook salmon scale characters even in the uni­
variate case. In many other cases, the underlying
distribution functions may be non-Gaussian. Dis­
criminant functions based upon non-Gaussian dis­
tributions or obtained by distribution-free
methods are preferable to those based upon an
unrealized assumption of normality.

Nearly all of the discriminant function analyses
used in the investigations of Pacific salmon have
been two-class analyses designed to determine the
continent of origin of salmon taken on the high
seas. For the two-class situation only one discrim­
inant function need be calculated. These two-class
problems are a special case of the many-class prob­
lems in which a separate discriminant function is
calculated for each class. Bilton and Messinger
(1975) calculated discriminant functions for each
of several runs in a classification study on sockeye
salmon. If several stocks of salmon intermingle
and are to be classified, analyses of this type are
needed.

Specht's (1966) polynomial discriminant
method does not require that the underlying den­
sity distributions be multivariate normal nor that
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APPLICATION OF THE METHOD

where p = dimension of the vector X (set of scale
characters)

Choose d(X) = 8r so that hrpr(X) > hsps (X)

for all s '" r

The fish comprising the test samples are classified
to test the effectiveness of the polynomial discrim­
inant method and to determine the a priori prob­
abilities. (Each test sample consists of fish from
one class.) Finally, fish collected from the zone of
intermingling are classified to determine the de­
gree of intermingling in the area of interest.

Appraisal of the method using scale samples of
sockeye salmon collected from the 1967 escape­
ment in five Bristol Bay rivers showed large per­
centages of fish comprising the test samples were
correctly classified. However, misclassified fish in
the test group (set of test samples from all rivers
being considered) were not assigned to the rivers
in proportion to the known relative test sample
sizes. To balance these misclassifications, wher­
ever a greater number of fish comprising the test
group was assigned to a particular river than
should have been (according to the relative test
sample sizes), the a priori probability for that river
was lowered. Corresponding increases were made
for those classes with insufficient assignment. By
alternatively using the decision procedure of the
polynomial discriminant method and adjusting
the a priori probabilities, we obtained solutions so
that the number offish belonging to a certain river
that were misassigned to all other rivers approxi­
mately equaled the number offish misassigned to
that certain river from all other rivers. Thus the a
priori probabilities were not used in the manner
their name suggests, but a priori knowledge may
dictate test sample sizes. The relative test sample
sizes in the test group may be in the relative pro­
portions to be expected in the unknown sample
(Le., historical relative run sizes). The adjustment
procedure, then, shifts the nonlinear decision sur­
faces between the probability densities so that the
incorrectly identified samples are assigned to the
various rivers in the proportions dictated by the
test sample sizes in the test group. However, the
primary purpose of the adjustment procedure is
not to balance the misclassifications but to
maximize the number ofcorrect classifications. As
the misclassifications are balanced, the number of
correct classifications generally increases. At this
point the result is a classification method that
maximizes the total number of correct classifica­
tions and balances misclassification rates for a test
group in which the test sample sizes are in particu­
lar proportions.

However, it is obvious that the proportions of
fish from the various classes in the test group
would rarely be identical to those proportions in

the decision on an unknown X
the classes (origins)
the polynomial value for X
calculated using the discrimi­
nant function for class 8i
the a priori probability, the
uses of which will be de­
scribed later.

hi

where

The decision on an unknown X (set of scale mea­
surements from a salmon of unknown origin) is
thus:

1 ~kj~'p

j 1,2, ..., h
h = the degree of the variable portion of the term.

"A polynomial discriminant function with six variables and of
the fourth order will contain 210 terms. Since our calculations
were performed by computer, we chose not to delete the third or
fourth degree terms. However, if more than six variables are
used, it would be wise to truncate further in order to keep the
number of terms down.

Three scale sample sets are required to imple­
ment the polynomial discriminant method: learn­
ing samples, test samples, and unknown samples.
The learning and testing samples are collectE·d
from each subpopulation when they are segre­
gated (i.e., in the rivers oforigin). Scale characters
to be measured in the unknown sample for the
required discrimination are determined by
evaluating characters measured in the learning
samples. The learning samples and the characters
selected are used to calculate the coefficients in the
polynomial discriminant functions. To calculate
these coefficients, the value for the smoothing
parameter and the point at which the discrimin­
ant function should be truncated must be deter­
mined. Various circumstances will dictate differ­
ent choices. When a smoothing parameter of 1.5
was chosen, all terms in the discriminant function
greater than the fourth order contributed negligi­
bly to polynomial values and so were truncated in
our applications. Often, polynomial discriminant
functions of lower order yield adequate results. 5
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the unknown sample. Thus, imbalance among the
misclassified fish will recur, unless the expected
accuracy ofclassification is very good (near 100%).
We have devised a method to correct for this.

Based upon the results of classification of the
known test group, the classification matrix, C, is
estimated:

where f: ij is an estimate of the fraction of fish
allocated to class i belonging to class j, such

n
that k Cij = 1.0, V j. (Note that for each j the

i=l

Cij 's are a set of estimated multinomial prob­
abilities and that each test sample size should be
adequate.) If the discrimination is error-free, C
would be an identity matrix. The adjustment of a
priori probabilities causes the initially estimated
classification matrix to evolve to the point where

CT = R t such that T =R t •

The ith component ofthe vector T is the fraction of
fish in the test group from test sample i (class i),
and the ith component of the vector R t is the
fraction offish in the test group allocated to class i
by the adjusted polynomial discriminant method.

The test samples comprising T are not indepen­
dent of the classification scheme since they are
used to determine the a priori probabilities used in
the decision rule. Hence, the estimated prob­
abilities in the classification matrix may not be
unbiased. However, we did chi-square tests that
show elements of the classification matrix are not
significantly different when estimated with either
the test samples used to determine the a priori
probabilities or a second independent test group.
Thus, we prefer to use only one test group to de­
termine the a priori probabilities and to estimate
the elements of the classification matrix because
the test sample sizes will be larger (and the var·
iance of the Cij'S smaller) if we do not subdivide
the fish available.
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Now, let Ui be the fraction offish in a sampled
group that belong to the ith class. The vector U is
then unknown except for the obvious side condi-

n
tion k ui = 1. The classification matrix now

i=l

operates on U to give:

CU =Rus

where the ith component of R u is the fraction of
fish in the unknown sample allocated to the ith
class. Since C is estimated, R u is known and since
C is usually nonsingular, we can estimate U by

U=C-IR u'

Each point estimate (u i) obtained will have some
variance. This variability will depend upon the
accuracy with which fish from class i are classified,
the accuracy with which the elements of Care
estimated, and variance due to sampling error en­
countered when obtaining the unknown sample.
Thus, ifany U i is small, then its estimate (u i) may
be negative. Such solutions are meaningless. In
such cases the classes with negative solutions
should be dropped (assume such U i = 0) and the
analyses repeated.

We did simulation work to evaluate the classi­
fication matrix correction procedure for the two­
and three-class situations. Five hundred simu­
lated experiments were done for each situation.
For the two-class case the average error of the
classification results was 0.100 while that of the
corrected estimates was 0.055. In 84% ofthe exper­
iments the corrected estimate was closer to the
true value than classification result. For the
three-class case the average error of the classifica­
tion results was 0.127 while that of the corrected
estimates was 0.054. In 89% of the experiments
the corrected estimate was closest to the true
value. The results of these simulations show that
the classification correction procedure improves
estimates of the true proportion of a class present.

This classification matrix correction procedure
will reduce to the correction procedure developed
for the two-class case by Worlund7 in the following
manner:

8A similar relationship and a least squares solution technique
is given by Worlund and Fredin (1962).

7Worlund, D. D. 1960. A method for computing the variance of
an estimate of the rate of intermingling of two salmon popula­
tions. Unpubl. manuscr., 13 p. Bur. Commer. Fish., Bioi. Lab.,
Seattle, Wash.
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ri - Cij
substitution yields Ui = -'---":::'"

cii - cij ,

8Age designation indicates fish which migrated to sea after
two winters in freshwater and have spent two winters at sea.
They are expected to return from the ocean primarily at age 2.3,
or after spending three winters at sea.

which is the correction formula of Worlund and
Fredin (1962) (except for differences in notation
and terminology) that has been used in many
two-class Pacific salmon stock identification
studies.

Application to Sockeye Salmon Samples
Taken in High Seas Sampling

A problem of interest to the nations bordering
the North Pacific Ocean is the origin of sockeye
salmon taken on the high seas. The rivers oforigin
of sockeye salmon south of the central Aleutian
Islands in summer are of particular interest to the
United States since an index of their overall rela­
tive abundance is used to forecast the numbers of
mature fish returning to Bristol Bay in the follow­
ing year (Rogers 1975). These fish are primarily of
Bristol Bay origin (Hartt 1962, 1966; Hartt et al.
1975). Knowledge of the relative abundance of the
various runs of the Bristol Bay stock south of the
central Aleutians would be useful for forecast pur­
poses and might provide insight into the high seas
life history of the various runs.

In order to recognize age 2.2 immature sockeye
salmon on the high seas in 1976, the freshwater
growth patterns of scales from three of the major
rivers in Bristol Bay were examined.s Scales from
the smolt outmigrations of 1974 for the Kvichak
and Naknek Rivers were used as learning and Bit should be mentioned that all data points were "nor­

malized." That is, the mean and standard deviation for each scale
character were calculated from the learning samples (all
categories combined). All data points were then transformed by
subtracting off the mean and dividing by the standard deviation
for the appropriate scale character. This is done for numerical
purposes.

testing samples. For the Egegik River scales from
age 2.2 adult fish returning to spawn in 1976 were
used as learning and testing samples because
smolt scales were unavailable. The freshwater
scale patterns offish from these runs were used to
classify the sockeye salmon captured south of
Adak Island during summer 1976 after having
spent two winters in the ocean.

The scale patterns were examined under a mi­
croprojector of the type described by Dahlberg and
Phinney (1968). The widths of the summer,
winter, and plus growth zones were measured in
terms of circuli counts and distance. The width of
the widest circulus was also measured. Each scale
character was then ranked over all classes (rivers)
and the Kruskal-Wallis statistic (Kruskal and
Wallis 1952) calculated. The difference between
the average sum of ranks for each pairwise class
combination was also calculated. On the basis of
these statistics the scale characters providing the
best univariate separation were selected for use in
the polynomial discriminant method. Highly de­
pendent scale characters were not used.

By examining the learning samples, six scale
characteristics were chosen for use in the polyno­
mial discriminant method: 1) The number of the
circuli in the first winter growth zone, 2) the
number of circuli in the second summer growth
zone, 3) the number of circuli in the plus growth
zone, 4) the width of the first summer growth zone,
5) the width ofthe second winter growth zone, and
6) the width of the widest circulus.9 Learning
sample sizes of 25, 25, and 24 for the Egegik,
Kvichak, and Naknek River classes, respectively,
were used to calculate the coefficients in the
polynomial function for each class. The classi­
ficatory ability of these functions was then tested.

The relative test sample sizes for each class were
determined by examining run size data. According
to the average run sizes of age 2.3 salmon for the
last 8 yr approximately equal numbers offish from
each class were expected to occur in the unknown
sample. However, since the Kvichak River test
sample size was twice that of the Egegik or Nak­
nek River sample size, the fish in the latter test
samples were given a weight of2 when the a priori

ri Cjj - cijrj

CiiCn - CjiCij

1- ri'

1 - cii ,

1 - cij ,

u = C-I Ru

Cji =

Cjj

[

UI] [C22
r
l - C12

r
2]CnC22 - C2I C12

=

U2 cllr2 - C2I rI
CnC22 - C21 CI2

or

Since

Generally
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The estimated unknown vector was thus:

[

0.267]
R u = 0.222 .

0.511

[

0.800 0.040 0.167:]
6 = 0.080 0.740 0.208

0.120 0.220 0.625

[

0.325]
U = 0.061 .

0.614

Calculated Correct decisions Total (all calcu-
decisions Egegik Kvichak Naknek lated decisions)

Egegik 40 2 8 50
Kvichak 4 37 10 51
Naknek 6 11 30 47

Total (all
correct
decisions) 50 50 48 148

Application to
Inshore Fishery Stock Separation

FISHERY BULLETIN: VOL. 76, NO.2

TABLE I.-Results of the polynomial discriminant method on a
known test group of Bristol Bay sockeye salmon. The a priori
probabilities were 0.340, 0.332, and 0.328 for the Egegik,
Kvichak, and Naknek River classes, respectively.

classes considered will account for nearly all of the
age 2.2 sockeye salmon bound for Bristol Bay,
some may be non-Bristol Bay fish. When the Bris­
tol Bay runs are at a low point in their cycle, up to
20% of the high seas sockeye salmon at Adak Is­
land may be non-Bristol Bay fish (Hartt et al.
1975). The possible bias from classifying the non­
Bristol Bay fish into the classes established should
be considered since 1977 is a low year in the sock­
eye salmon run cycle.

In conclusion, the polynomial discriminant
method can be used to identify certain runs of
sockeye salmon on the high seas by differences in
freshwater scale growth patterns. Possibly the
relative proportions of sockeye salmon that will be
returning to inshore areas can be predicted. Even­
tually the method will be used to predict one year
in advance the relative run sizes to the major Bris­
tol Bay rivers by sampling these sockeye on the
high seas.

A problem of interest to the Alaska Department
of Fish and Game is the separation of stocks in
commercial catches in inshore areas, particularly
the separation of Kvichak, Naknek, and Egegik
River sockeye salmon. Th~ Division of Commer­
cial Fisheries is collecting data on scale measure­
ments for growth studies. They are interested in
how well these data and the polynomial discri­
minant method can separate Bristol Bay sockeye
salmon stocks.

Scale data from samples of the 1973 spawning
escapement were examined. Each of two age­
classes was examined separately. Distance and
circuli counts to both the freshwater and saltwater
annuli were examined for use in the polynomial
discriminant method with the Kruskal-Wallis and
multiple comparison procedures. The accuracy of
classification for age 1.2 and age 2.2 sockeye salm-

-0.360] [0'267]
-0.478 0.222

1.837 0.511

u.

0.037
1.498

-0.534[

1.300
-0.078
-0.222

[

0.171]
= 0.067 =

0.761

6- 1 R
u

where the subscripts of the matrix elements ( Ci/S)

were 1, 2, and 3 for the Egegik, Kvichak, and
Naknek River classes, respectively. Seventy-two
percent of the fish in the test group were correctly
classified. The fish in the high seas sample were
then classified with the adjusted polynomial dis­
criminant method.

Of the 101 sockeye salmon, 25 were classified as
Egegik River fish, 22 as Kvichak River fish, and 54
as Naknek River fish. The resultant vector was:

probabilities were adjusted. After adjusting the a
priori probabilities, we obtained the results given
in Table 1. The classification matrix was then es­
timated:

Based upon preliminary data for the 1977 Bristol
Bay sockeye salmon run from the Alaska Depart­
ment of Fish and Game, the actual unknown vec­
tor was:

The classification matrix correction procedure
gave a slightly better estimate than the direct
results of the polynomial discriminant method.
The differences between the U i 's and the Ui 's were
due to bias and variability. (We are presently
examining methods to reduce the variability of
our Ui'S.)

A problem with the high seas sample is that
some of these sockeye salmon originate in rivers
other than those considered. Although the three
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on was examined for each age-group with known
test groupS.

The degree of separation for age 1.2 sockeye
salmon is shown in Table 2. (Egegik River fish are
historically insignificant in this age-class.) The
scale characters providing this separation were: 1)
the circuli count to the first annulus, 2) the dis­
tance to the first annulus, 3) the distance from the
first to the second annulus, 4) the distance from
the second to the third annulus, 5) the circuli count
from the third annulus to the edge of the scale, and
6) the distance from the third annulus to the edge
of the scale. Ninety-five percent of the fish in the
test group were correctly classified.

The degree of separation for age 2.2 sockeye
salmon is shown in Table 3. The scale characters
providing this separation were: 1) the circuli count
to the first annulus, 2) the distance to the first
annulus, 3) the circuli count from the first to the
second annulus, 4) the distance from the second to
the third annulus, 5) the distance from the third to
the fourth annulus, and 6) the circuli count from
the fourth annulus to the edge of the scale.
Seventy-seven percent of the fish in the test group
were correctly classified.

Thus, the polynomial discriminant method can
provide adequate separation with a given data
base. The data collected for growth studies provide
good separation in some cases. Sockeye salmon
from the Egegik, Kvichak, and Naknek Rivers are
distinguishable in terms of these scale measure­
ments and it should be possible to estimate their
relative proportions in catch samples.

TABLE 2.-Results ofthe polynomial discriminant method on 1.2
age Bristol Bay sockeye salmon from 1973. The a priori prob­
abilities were 0.52 and 0.48 for the Kvichak and Naknek River
classes, respectively.

Calculated Correct decisions Total (all calcu-
decisions Kvichak Naknek lated decisions)

KVichak 18 0 18
Naknek 2 19 21

Total (all correct
decisions) 20 19 39

TABLE 3.-Results ofthe polynomial discriminant method on 2.2
age Bristol Bay sockeye salmon from 1973. The a priori prob­
abilities were 0.342, 0.330, and 0.328 for the Egegik, Kvichak,
and Naknek River classes, respectively.

Egegik 20 3 3 26
KVichak 1 22 4 27
Naknek 5 1 14 20
Total (all

correct
_~ecisions) 26 26 21 73

COMMENTS AND CONCLUSIONS

The key to successful implementation of the
polynomial discriminant method is the choice of
scale characters that reflect differences between
the subpopulations of concern. The scale charac­
ters that are most likely different are those that
are formed when the populations are geographi­
cally separated. Genetic and environmental
influences on scale formation probably interact to
create these differences. Although it is likely that
no single characteristic will provide the required
separation, a group of characteristics analyzed
with multivariate techniques (e.g., the polynomial
discriminant method) will often provide this re­
quired separation. The polynomial discriminant
function technique requires no consideration of
the underlying probability density functions for
these scale characters because these density func­
tions are estimated nonparametrically. Once the
characters that provide the best separation are
determined (by rank order comparison procedures
in this paper) the discriminant function analysis
may be implemented.

A learning sample is needed to calculate the
discriminant function for each subpopulation.
These fish comprising these samples must be col­
lected before or after the populations intermingle
(either as smolts or returning adults in the respec­
tive rivers). Learning samples must be taken from
the same year class and freshwater age-group as
the unknown (mixed) population if the scale
characters are known or thought to vary from year
to year. Using Specht's (1966) algorithm and the
data from these learning samples, the coefficients
in the discriminant functions are calculated. The
next step is to appraise the effectiveness of these
polynomial discriminant functions.

By classifying a group of test samples the pro­
portion of correctly identified fish and the clas­
sification error rates can be determined. The pro­
portion ofcorrectly identified fish will likely be low
until a good set of a priori probabilities is deter­
mined. As the a priori probabilities are adjusted to
balance the classification error rates, the propor­
tion of correctly identified fish will generally in­
crease. The proportion of correctly identified fish,
when the classification error rates are satisfactor­
ily balanced, gives an indicator ofthe effectiveness
of the polynomial discriminant method. The clas­
sification error rates specific to these final a priori
probabilities are now estimated so that they may
be corrected for when the polynomial discriminant

421



method is applied to the unknown mixed sample.
This is done with the classification matrix correc­
tion procedure.

First, the fish in the unknown mixed sample are
classified with the polynomial discriminant
method (using the adjusted a priori probabilities).
The proportions resulting for each subpopulation
and the decision matrix allow simple algebraic
solution for the estimated true proportions of the
various subpopulations in the zones of interming­
ling.

Estimates of this type are often needed in par­
ticular management situations involving Pacific
salmon. By using scale samples and the polyno­
mial discriminant method, the proportions of the
major classes present in areas where the subpopu­
lations mix can be estimated. We have considered
only two possible applications in this paper: high
seas monitoring for predictive purposes and the
analysis ofcatch samples. Many other possibilities
exist for other situations and other salmon species:
the timing of inshore runs could be examined in
estuarine areas or in river systems, the continent
of origin of salmon on the high seas could be
examined (for those species' or areas not already
analyzed), or the intermingling of hatchery and
native populations could be analyzed for certain
fisheries. Since scale samples are relatively easy
to collect and exchange and since computers are
readily available to do the necessary calculations,
the polynomial discriminant method is a flexible
and practical tool for the racial analysis of Pacific
salmon, particularly sockeye salmon.
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